Finite-difference time-domain simulation of light scattering from single cells
نویسندگان
چکیده
منابع مشابه
Finite-difference time-domain simulation of light scattering from single cells.
The finite-difference time-domain (FDTD) technique is used to compute light scattering from biological cells in two dimensions. Results are presented for the computed scattering patterns of cells containing multiple organelles. This method provides considerably more flexibility than Mie theory because of its ability to model inhomogeneous objects such as cells. © 1997 Society of Photo-Optical I...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملfinite-difference time-domain simulation of light propagation in 2d periodic and quasi-periodic photonic structures
ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. we...
متن کاملLight scattering from cells: finite-difference time-domain simulations and goniometric measurements.
We have examined the light-scattering properties of inhomogeneous biological cells through a combination of theoretical simulations and goniometric measurements. A finite-difference time-domain (FDTD) technique was used to compute intensity as a function of scattering angle for cells containing multiple organelles and spatially varying index of refraction profiles. An automated goniometer was c...
متن کاملFinite-difference time-domain simulation of scattering from objects in continuous random media
A three-dimensional (3-D) finite-difference time-domain (FDTD) scheme is introduced to model the scattering from objects in continuous random media. FDTD techniques have been previously applied to scattering from random rough surfaces and randomly placed objects in a homogeneous background, but little has been done to simulate continuous random media with embedded objects where volumetric scatt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 1997
ISSN: 1083-3668
DOI: 10.1117/12.275219